

量子物理学・ナノサイエンス第63回特別セミナー

Catalogue of topological electronic materials

講師 : Dr. Tiantian Zhang

Institute of Physics, Chinese Academy of Sciences

日程 : 5月29日(水)15:00-16:00

場所 : 本館2階 284B 物理学系輪講室

概要

"Ten-fold way" table^[1] tells us that different spatial dimensions and symmetries correspond to different topological classes. However, this table only contains time-reversal symmetry, particle-hole symmetry and chiral symmetries, but not a crystalline symmetry. Discoveries for topological insulators^[2], topological crystalline insulators^[3], and high-order topological insulators^[4] make people realize that crystalline symmetries can bring new topological states and the diversity of symmetry-protected topological states in materials. Thus classification of topological states for the variety of crystalline symmetries becomes a vital issue.

In my talk, I will introduce a series of theoretical tools, such as compatibility relation^[5], symmetry-based indicator^[6], and indicator formulas^[7-9], which can help us to diagnose various topological states by considering time-reversal symmetry and crystalline symmetries. After that, I will show you how to use those theoretical tools to perform a high-throughput calculation^[10].

- [1] Chiu, et al. Reviews of Modern Physics, 88, 035005 (2016).
- [2] Zhang et al. Nature Physics, 5, 438 (2009).
- [3] Hsieh, et al. Nature Communications 3, 982 (2012).
- [4] Schindler, et al. Science Advances 4, eaat0346 (2018).
- [5] Bradlyn et al, Nature 547, 298 (2017).
- [6] Po et al, Nature Communications 8, 50 (2017).
- [7] Zhida Song, Tiantian Zhang *et al.* Nature Communications **9**, 3530 (2018).
- [8] Zhida Song, Tiantian Zhang et al. Physical Review X 8, 031069 (2018).
- [9] Khalaf, et al. Phys. Rev. X 8, 031070 (2018).
- [10] Zhang, et al. Nature **566**, 475 (2019).

連絡教員 物理学系 村上 修一(内線 2747)